BSH452 BIOSTATISTICS AND BIOINFORMATICS

Course Outcomes:

After successful completion of the course, students will be able to:

- CO 1. Apply statistical methods to analyse and interpret the biological data.
- CO 2. Represent the data of experimental and field studies through graphs and diagrams.
- CO 3. Understand statistical concepts and learn to use a variety of statistical tests
- CO 4. Know how to use bioinformatics for DNA and protein sequence analysis through bioinformatics tools and databases
- CO 5. Understand microarray technique for gene expression analysis.
- CO 6. Understand the concept of protein folding and structure based targeted drug design

Unit I (13 hours)

Biological data-frequency distribution, graphical and diagrammatic representations; Measures of Central tendency - Mean, Median and Mode; Measure of Dispersion - Range, Variance, Standard deviation, Coefficient of variation, DiversityIndex.

Populations versus sample - sampling techniques; Standard error, Confidence limits. Random experiment-probability. Binomial, poissonandNormal distributions and their applications ingenetics.

Unit II (13 hours)

Simplelinear Regression and Correlation analysis. Analysis of variance, principles of experimental design. Multipleregression.

Tests of significance- Normal, X², (Chi-square), 't' and F tests; Testing for goodness of fit. One-way analysis of variance (ANOVA) and Two-way analysis of variance. Statistical packages.

Unit III (13 hours)

Introduction to bioinformatics, databases, search engines, internet tools and World Wide Web (WWW). Molecular modeling database at NCBI, major web resources for bioinformatics - Biological database types and their functioning, microbiological databases, primary sequence databases, carbohydrate databases, RNA databases, genome databases, organism databases, biodiversity. Sequence database: Introduction, nucleotide sequence databases, protein sequence databases, EMBL nucleotide sequence databases, structure databases. Phylogeny - Tree definitions, distance matrix methods and parsimony and bootstrapping. DNA and protein sequence Analysis, FASTA, BLAST and GCG Wisconsin/Emboss packages. Genomics and proteomics.

Unit IV (13 hours)

Microarray techniques, Gene Expression analysis, Protein Folding, Lattice models, Comparative modeling, threa ing, folds and function, Distributed Computing approach, genome@home, folding@home, proteomics, protein structure based targeted drug design – small molecular interactions and docking.